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Abstract The description of structural and dynamical properties of nuclei starting from the funda-
mental interaction between nucleons has been a long-standing goal in nuclear physics. The ab initio
No-Core Shell Model combined with the Resonating-Group Method (NCSM/RGM) is capable of ad-
dressing both structural and reaction properties of light-nuclei. While promising results have already
been achieved starting from a two-body Hamiltonian, a truly realistic prediction of nuclear observ-
ables requires the treatment of the three-nucleon interaction. Using similarity-renormalization-group
evolved two- and three-nucleon interactions, we will present recent applications to n-4He scattering
process when accounting for the chiral two- plus three-nucleon interaction versus the chiral two-nucleon
interaction. We compare our results to phase shifts obtained from R-matrix analysis of data up to 16
MeV neutron energy, below the d-3H threshold.
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1 Introduction

Nuclei are self-bound systems consisting of composite objects, protons and neutrons. The interaction
between nucleons is complex as it arises from the underlying theory of quantum chromodynamics.
Nevertheless, understanding this interaction is essential to grasp the static and dynamical properties
of nuclei. These properties, in turn, constitute an important piece of the puzzle that created and drives
the evolution of our universe such as low-energy light-nuclei fusion reactions occurring in stars. We
can study the nuclear interaction within the framework of the No-Core Shell Model combined with
the Resonating Group Method (NCSM/RGM). This method is capable of addressing both static and
dynamical properties of nuclei, until recently using only two-nucleon (NN) interactions. Recently, we
have studied the inclusion of a three-nucleon (3N) force, in particular the chiral N2LO of Ref. [9], in
the formalism and its effects on the phase shifts of the n-4He elastic scattering [8]; we present here a
selection of those results.

2 Formalism

The many-body wave function of the A-nucleon system,

|ΨJ
πT 〉 =

∑
νν′

∫
drdr′ r2r′ 2 [N− 1

2 ]J
πT
νν′ (r, r′)

χJ
πT
ν′ (r′)

r′
Aν |ΦJ

πT
νr 〉 , (1)

is expanded over a continuous set of cluster basis states, |ΦJπT
νr 〉. The cluster basis consists of translationally-

invariant states describing two nuclei, a target of mass number (A−a) and an a-nucleon projectile,
traveling in a 2s+1`J partial wave of relative motion (with s the channel spin, ` the relative orbital
angular momentum, and J the total angular momentum of the system). The operator Aν enforces
the antisymmetrization of nucleons that pertain to different clusters. The coefficients χJ

πT
ν′ (r′) rep-

resent continuous linear variational amplitudes. These are determined by solving the orthogonalized
NCSM/RGM equations (we refer the interested reader to Sec. II.E of Ref. [12]):∑

γγ′ν′

∫
dydy′dr′y2y′2r′ 2[N− 1

2 ]J
πT
νγ (r, y) HJ

πT
γγ′ (y, y′) [N− 1

2 ]J
πT
γ′ν′ (y′, r′)

χJ
πT
ν′ (r′)

r′
= E

χJ
πT
ν (r)

r
, (2)

where E is the total energy in the center of mass (c.m.) frame. The norm and Hamiltonian inte-
gration kernels, N JπT

νν′ (r, r′) and HJπT
νν′ (r, r′) respectively, are the overlap and matrix elements of the

Hamiltonian with respect to the cluster basis, i.e.

N JπT
ν′ν (r′, r) = 〈ΦJ

πT
ν′r′ |Aν′Aν |ΦJ

πT
νr 〉 and HJ

πT
ν′ν (r′, r) = 〈ΦJ

πT
ν′r′ |Aν′HAν |ΦJ

πT
νr 〉 . (3)

The microscopic A-nucleon Hamiltonian, H, consists of the relative kinetic energy, the intrinsic Hamil-
tonians of both clusters and the inter-cluster nuclear plus Coulomb interaction. The norm and Hamil-
tonian kernels are obtained from the eigenvectors of the target and projectile after expanding on a
Harmonic Oscillator (HO) NCSM basis controlled by the parameter Nmax. In this work, the nuclear
interaction accounts for the two- and three-nucleon interaction, V NN and V 3N , respectively. For in-
stance, the three-nucleon force contributions to the Hamiltonian kernel in the model-space are

V3N
ν′n′νn =

(A−1)(A−2)

2
SD〈ΦJ

πT
ν′n′ |V 3N

A−2,A−1,A(1− 2PA−1,A)|ΦJ
πT
νn 〉SD (4)

− (A−1)(A−2)(A−3)

2
SD〈ΦJ

πT
ν′n′ |PA−1,AV 3N

A−3,A−2,A−1|ΦJ
πT
νn 〉SD , (5)

in the Slater-determinant (SD) basis of Eq (31) of Ref. [12] where n′ and n are the radial quantum
number of the HO expansion. As in the two-nucleon case of Ref. [12], we identify a direct [Eq. 4] and
an exchange [Eq. 5] term.
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Fig. 1 (Color online) Comparison between our cal-
culated NN -only (dashed green lines) and NN+3N -
full (solid red lines) n-4He phase-shifts (2S1/2, 2P1/2,
2P3/2 and 2D3/2 partial waves) and phase shifts ob-
tained from an accurate R-matrix analysis (purple
crosses) [6]. We account for the polarization of the
target by including the first six low-lying states of
the 4He. Additional parameters are Nmax=13, λ=2.0
fm−1 and h̄Ω=20 MeV.
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Fig. 2 (Color online) Comparison between our cal-
culated NN -only (dashed green lines) and NN+3N -
full (solid red lines) differential cross-section of the
n-4He collision and data (purple crosses) of Ref. [4]
at incident neutron energy of 17.6 MeV. Additional
parameters are identical to the one of Fig. 1.

3 Applications

Applications of the NCSM/RGM approach for the description of single-nucleon projectile collisions
have already led to very promising results based on NN interactions [11; 12]. The nucleon-4He is
an ideal testing ground to investigate the importance of the chiral 3N force on low-energy reaction
observables. It consists in a single open channel up to fairly high energy and, at the same time, it
is sensitive to the strength of the (NN+3N) spin-orbit force as demonstrated in earlier studies of
the 2P3/2 and 2P1/2 scattering phase-shifts [10; 11; 12]. For this study [8], we work with the chiral

N3LO NN interaction of Ref. [5] and chiral N2LO 3N interaction of Ref. [9] both evolved with the
Similarity-Renormalization Group (SRG) method [7; 3] that softens the short-range repulsion of the
nuclear interaction. It should be noticed that, already starting from an initial NN Hamiltonian, the
SRG procedure generates induced 3N forces that have to be taken into account. We denote the two-
body portion of the SRG-evolved chiral NN interaction as NN -only and label NN+3N -full results in
which induced and SRG-evolved chiral 3N forces are also included. A study of the dependence of the
phase-shifts with respect to the model-space parameters shows overall good convergence properties for
Nmax=13 HO shells and including the first six excited states of the 4He, to account for the polarization
of the target [8].

In figure 1, we compare our low-energy n-4He scattering phase shifts to phase shifts obtained from
an accurate R-matrix analysis of 5He data (crosses) [6]. The model-space parameters are Nmax=13,
the SRG flow parameter λ=2.0 fm−1, the HO frequency h̄Ω=20 MeV and the first six low-lying states
of 4He are included. The phase shifts obtained with the NN+3N -full Hamiltonian are shown as solid
red lines while those obtained from the NN -only Hamiltonian are given as dashed green lines. When
the induced and SRG-evolved chiral 3N forces are included, we find a fairly good reproduction of
the experimental phase-shifts for all the partial waves at incident neutron energy below the d-3H
threshold. In particular, the induced 3N interaction is responsible for a significant overall reduction
of the P-wave phase shifts compared to the NN -only case (not shown in the figure). However, the
initial 3N interaction increases the spin-orbit splitting between the P waves, bringing the theoretical
results closer to experiment. For energies around the resonance position, both NN -only and NN+3N -
full 2P3/2 partial waves miss the experimental resonance energy at 0.78 MeV. The reason for this
disagreement could be twofold: First, the need for a more complex spin-orbit structure of the 3N force
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cannot be ruled out [10]. Second, the NCSM/RGM model space may still be insufficient for grasping
A-body short-range correlations in the 2P3/2 channel. To describe those correlations, we have included

the first six excited states of 4He corresponding to 24 MeV of excitation energy, however accounting
for, e.g., the coupling to the d-3H channel that opens experimentally at 17.63MeV would lead to a
more complete description of the scattering process. A way to overcome this difficulty is to treat on
the same footing the long-range cluster correlations and short-range A-body correlations, such as in
the No-Core Shell Model with Continuum (NCSMC) of Refs. [1; 2]. Despite of this, as illustrated in
Fig. 2, we observed a fairly good reproduction of the n-4He experimental differential cross-section,
in general, using either NN -only or NN+3N -full Hamiltonians, while larger discrepancies with data
remain for the Ay polarization observable of this system, even if the chiral 3N interaction improves
the agreement.

4 Conclusion

We have presented an outline of the NCSM/RGM, an ab initio many-body approach capable of de-
scribing static and dynamical properties of nuclei. In the binary cluster formalism, the eigenstates of
the target and projectile are combined into a channel basis expansion and complemented with realis-
tic two- and three-nucleon interactions. We discussed the inclusion of the three-nucleon force in the
NCSM/RGM formalism using the simple but instructive case of the elastic n-4He scattering. The 3N -
force contribution plays an important role in reproducing the experimental phase-shifts, in particular
the spin-orbit splitting between the P waves. This work is the first step towards high-precision nuclear
reaction calculations with NN and 3N interactions [8].
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12. Quaglioni S, Navrátil P (2009) Ab initio many-body calculations of nucleon-nucleus scattering. Physical

Review C 79(4):044,606


